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Abstract

In this paper, we analyze the 3-body problem in order to find possible stable orbits
for a small planet orbiting around two stars of masses m1 and m2. We first derive the
equations of motion for the two-star system in the absence of external forces. Following
this solution, we find the potential in a rotating reference frame and identify the five
Lagrange points, and observe that they do not o↵er long-term stability. Because the
three body problem lacks an analytical solution, we proceed to simulate the orbits of
the binary star system, and then add in a planet with varying initial conditions. We
observe stable orbits in the point-mass limit and chaotic, yet potentially stable orbits
in the case of smaller radii from the center of mass. Additionally we lend credence to
our analytic argument for instability of the Lagrange points by observing the orbit of
the planet starting at L1. Finally, we discuss the limitations of our model.
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1 Interpreting the Problem

For this problem, we consider the motion of three celestial objects: Two stars, with masses
1.0 and 0.5 times the mass of the sun (1.99 ⇥ 1030kg), and a circumbinary planet with
comparatively negligible mass. We are given the period of the binary star system as 30
Earth-days. As an instance of the three-body problem, the closed form solution for this
problem is unattainable. Our task is to identify numerically feasible orbits by constraining
the system and conducting simulations to model the system’s behavior over time.

For our purposes, we constrain the orbits to a single plane, an assumption that is well
founded in the results of modern astrophysical literature. Moreover, we assume that both
stars and our planet are spherically symmetric, and that the radii of the stars are small
compared to the orbital radius. In addition, we take the planet to be orders of magnitude
smaller than that of the stars - namely, the mass of the Earth (5.97⇥ 1024).

2 Background

2.1 Summary of Concepts

The combined system of a circumbinary planet and its two stars is an example of three-body
motion. More generally, this represents a special case of the N-Body problem, which seeks
solutions in the form of stable orbits for systems involving N objects under the influence of
gravity. It is well understood that the N-body problem has 6N variables (3 position and 3
velocity), where N represents the number of bodies in the system. Although these can be
reduced by choice of coordinate and symmetries, even the three-body problem remains un-
solved. This problem, in its many variants, has captivated the world of Physics through its
terse, and often analytically intangible systems of equations. Nonetheless, computer simu-
lations have provided a framework for deriving various theoretical solutions. Furthermore
astrophysicists have used adaptive optics and Doppler E↵ect analysis as tools to better
understand orbital dynamics in multi stellar systems.

2.2 Understanding the Two-Body Problem

Before we foray into circumbinary orbits, we must first delve into the Two-Body Problem.
This will give us a first approximation for the motion of the two stars, in the event that the
planet is much less massive than either of the stars, so its gravitational pull is negligible.
Later, we will consider the e↵ect of the planet’s mass on the system’s motion, but for now
this is a reasonable assumption to make, as most planets in multistellar systems are orders
of magnitude less massive than the stars around which they orbit.
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2.2.1 Equations of Motion

Here, we will derive out the essential equations of motion for a two-body system under the
e↵ects of gravity. We shall designate the stars A and B, and their masses m

A

and m
B

.
Without loss of generality, we can choose an origin O, and define the positions relative to
that origin as ~r

A

and ~r
B

respectively.

Figure 1: Relative positions of A and B. From the diagram, it is easy to see that taking
~r to be ~r

A

� ~r
B

gives the di↵erence in positions of the two stars.

The potential energy due to gravity is

U(~r
A

,~r
B

) =
�Gm

A

m
B

|~r
A

� ~r
B

| (1)

Substituting in ~r = ~r
A

� ~r
B

gives the simplified relation

U(~r) =
�Gm

A

m
B

|~r| (2)

Switching to the center of mass frame will also simplify our analysis, because this
reference frame provides a translational symmetry. By Noether’s theorem, momentum is
conserved. it is trivial to see that the center of mass is

~R =
m

A

~r
A

+m
B

~r
B

m
A

+m
B

(3)

Thus, the kinetic energy T can be written as

T =
1

2

⇣
m

A

~̇r 2
A

+m
B

~̇r 2
B

⌘
=

1

2

⇣
(m

A

+m
B

) ~̇R2 + (
m

A

m
B

~̇r 2

m
A

+m
B

)
⌘

(4)

If we let µ = mAmB
mA+mB

, then this becomes

T =
1

2

⇣
(m

A

+m
B

) ~̇R2 + (µ~̇r 2)
⌘

(5)
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Now that we have the potential (2) and the kinetic energy (5) with respect to ~r and ~R,
we can proceed to set up the Lagrangian L, which we can use to solve the equations of
motion.

L = T � U =
1

2

⇣
(m

A

+m
B

) ~̇R2 + (µ~̇r 2)
⌘
+

Gm
A

m
B

|~r| (6)

By conservation of momentum, ~̇R is constant, so the coordinate is ’ignorable’, and we
can turn our attention to ~̇r. We assume in this analysis that the stars both move in a
plane, so that our problem is pared down to two coordinates, and we can represent ~r in
polar coordinates as a function of r and �.

~r = ~r(r,�) (7)

Hence, the Lagrangian can be written as

L = T � U =
1

2

⇣
(m

A

+m
B

) ~̇R2 + µ(ṙ2 + r2�̇2)
⌘
+

Gm
A

m
B

|r| (8)

We can then solve the Euler Lagrange equations

d

dt

@L
@�̇

=
@L
@�

(9)
d

dt

@L
@ṙ

=
@L
@r

(10)

Solving the Angular Equation (9), we get

@L
@�

= µr2�̇ = `
z

(11)

where `
z

, the z component of the angular momentum, is constant[1]. Solving the Radial
Equation (10), and substituting in (11) for �̇, we get

µr̈ =
`2
z

µr3
� Gm

A

m
B

r2
(12)

Now, we will use these equations to describe r in terms of �. To do this, we must
perform the substitution

u =
1

r
(13)

and notice that
d

dt
=

d�

dt

d

d�
=

`
z

u2

µ

d

d�
(14)

which allows us to write

u”(�) = �u(�) +
µGm

A

m
B

`2
z

(15)
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Because the force of gravity obeys the inverse square law, all coordinate dependence
drops out of the final term, leaving it as a constant, and enabling us to solve this di↵erential
equation analytically[1]. Letting

w(�) = u(�)� µGm
A

m
B

`2
z

(16)

we find that
w”(�) = �w(�) (17)

which is the di↵erential equation for a simple harmonic oscillation with solution

w(�) = Acos(�� �) (18)

for some constant A. By choosing a convenient orientation, we can set � to 0. We can then
perform the necessary substitutions to express the equation in terms of u, and finally in
terms of r.

~r(�) =
c

1 + ✏ cos�
r̂ (19)

where c = `

2
z

µGmAmB
, and ✏ is the eccentricity of the orbit defined by

0 < ✏ =
A`2

z

µGm
A

m
B

< 1 (20)

for bounded orbits. Furthermore, we can use (19) and (3), combined with the fact that
~R = 0 in the center of mass frame to get the equations for ~r

A

and ~r
B

.

~r
A

(�) =
m

B

m
A

+m
B

c

1 + ✏ cos�
r̂ (21)

~r
B

(�) = � m
A

m
A

+m
B

c

1 + ✏ cos�
r̂ (22)

Figure 2: Example of a bounded elliptical orbit satisfying the equations of section 2.2.
r
min

is the distance between the origin, O, and the perihelion, and r
max

is distance between
the origin and the aphelion.
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3 Formulating the Three-Body Problem

Now that we understand the dynamics resulting from the two-body Problem, we can ex-
trapolate to N-particles - in our case 3 - by generalizing our approach. First, we look at
the three-body problem. Then we look at the restricted three-body problem, in which one
of the three objects has negligible mass. Finally, we proceed to analyze the stability of the
5 resulting Lagrange points.

3.1 The Three-Body Problem

In a system with N point-masses, we can index objects with i, such that object i has mass
m

i

, radius ~r
i

from the designated origin, and velocity ~̇r
i

, with 1  i  N 2 Z. In order to
find the motion of the point-masses, we must solve a system of N coupled force equations,
the ith of which is given by[2]

m
i

d2~r
i

dt2
=

NX

j 6=i

Gm
i

m
j

~r
j

� ~r
i

||~r
j

� ~r
i

||3 (23)

For N = 3 we have a system of 9 coupled di↵erential equations:

d2~r1
dt2

= Gm2
~r2 � ~r1

||~r2 � ~r1||3
+Gm3

~r3 � ~r1
||~r3 � ~r1||3

(24)

d2~r2
dt2

= Gm1
~r1 � ~r2

||~r1 � ~r2||3
+Gm3

~r3 � ~r2
||~r3 � ~r2||3

(25)

d2~r3
dt2

= Gm1
~r1 � ~r3

||~r1 � ~r3||3
+Gm2

~r2 � ~r3
||~r2 � ~r3||3

(26)

3.2 Restricted Three-Body Problem

The three-body problem can be simplified if one of the objects is significantly less massive
than the other masses. Without loss of generality, assume this text itlight body to be the
third object. This decouples equations (24) and (25), giving the expressions[3]

d2~r1
dt2

= Gm2
~r2 � ~r1

||~r2 � ~r1||3
(27)

and
d2~r2
dt2

= Gm1
~r1 � ~r2

||~r1 � ~r2||3
(28)

To simplify the analysis even further, assume that the third object moves in the same plane
as the two massive objects. We know from Part 2 that the angular momentum of the first
two objects around the center of mass is constant. Thus, it makes sense to transform from
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a sidereal frame into a synodic frame. Choosing t such that t = 0 when the sidereal and
synodic axes coincide, we can relate the two coordinate systems for the third object:

x(t) = x0(t)cos(t)� y0(t)sin(t) (29)

y(t) = x0(t)sin(t)� y0(t)cos(t) (30)

Taking two time derivatives gives the equations relating the second derivatives:

ẍ = ẍ0cos(t)� 2ẋ0sin(t)� x0cos(t)� ÿ0sin(t)��2ẏ0cos(t) + y0sin(t) (31)

ÿ = ẍ0sin(t) + 2ẋ0cos(t)� x0sin(t) + ÿ0cos(t)� 2ẏ0sin(t)� y0sin(t) (32)

Solving these equations, we get the synodic accelerations:

ẍcos(t) + ÿsin(t) = ẍ0 � x0 � 2ẏ0 (33)

�ẍsin(t) + ÿcos(t) = ÿ0 � y0 + 2ẋ0 (34)

If we substitute in the gravitational values of the sidereal accelerations, and let ↵ = m2
m1+m2

,

and G(m1+m2) = 1, then we can express the e↵ective potential in the synodic frame as[3]

U(x0, y0) = � 1� ↵q
(x0 � ↵)2 + y02

� ↵q
(x0 + 1� ↵)2 + y02

� x02 + y02

2
(35)

3.3 Analysis of Lagrange Point Stability

Our analysis of the restricted three-body problem gave us the e↵ective potential of the
system in the synodic frame. In order to find equilibrium positions, we must find the
values at which the potential is extremized. In other words, we want the values that
satisfy the equation

rU = 0 (36)

These ’equilibrium’ positions, of which there are five, are called Lagrange points[4]. As
shown in Figure 3 below, the first three Lagrange points, L1, L2, and L3 all lie on the
straight line joining the two large masses[5].
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Figure 3: Lagrange points as equilibrium solutions to the restricted three-body problem.
The overlaid potential shows the points where rU = 0. (Courtesy HyperPhysics).

L1 occurs at the location where the centrifugal and gravitational forces balance each
other. At this point, the equation

m1

(R� r1)2
=

m2

r21
+
⇣ m1

m1 +m2
R� r1

⌘m1 +m2

R3
(37)

is satisfied, where R represents the distance between the two massive objects. At first
approximation, the solution is

r1 ⇡ R 3

r
m2

3m1
(38)

L2 occurs at the location where gravity balances inertia. At this point, the equation

m1

(R+ r2)2
+

m2

r22
=
⇣ m1

m1 +m2
R+ r2

⌘m1 +m2

R3
(39)

As is shown in Figure 3, r1 ⇡ r2. This is reflected in the fact that, to first approximation,

r2 ⇡ R 3

r
m2

3m1
(40)

L3 represents the solution to another equation balancing centrifugal and gravitational
forces:

m1

(R� r3)2
+

m2

(2R� r3)2
=
⇣ m2

m1 +m2
R+R� r3

⌘m1 +m2

R3
(41)

To a first order approximation,

r3 ⇡ R
7m2

12m1
(42)
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Although all three of these Lagrange points are equilibrium positions, they are unstable,
as d

2
U

dr

2 < 0. L4 and L5, however, the points that are equidistant from both masses, are given

by[6] L4 =

 
R

2

✓
m1 �m2

m1 +m2

◆
,

3
p
3

2
R

!
(43) L5 =

 
R

2

✓
m1 �m2

m1 +m2

◆
,�

3
p
3

2
R

!
(44)

They are stable if the following conditions[6] are met:

⇣m1 �m2

m1 +m2

⌘2
� 23

27

r
27
⇣m1 �m2

m1 +m2

⌘2
� 23  2

3.3.1 Calculating the Lagrange Points of Our System

Now that we have the positions of equilibria for the restricted three-body problem, we can
plug in the specific conditions of our binary star system: m1 = m

sun

= 1.99⇥ 1030kg, and
m2 =

msun
2 = 0.995⇥ 1030kg. For the sake of simplicity, take R = 1.

Table 1: Positions of Lagrange Points
Lagrange Point Position in units of R

L1 ( 3

q
1
6 , 0)

L2 ( 3

q
1
6 , 0)

L3 ( 7
24 , 0)

L4 (16 ,
3p3
2 )

L5 (16 ,�
3p3
2 )

Plugging the masses m1 and m2 into the stability condition, it is easy to see that L4

and L5 are not stable. Thus, although each Lagrange point is an equilibrium of our binary
star system, none are stable.

4 The Binary-Star Point-Mass Limit

Having established in the previous section that the Lagrange points presented only unsta-
ble equilibrium, we sought another simple model by which to generate possible points of
stability.

For a planet orbiting around the two stars at a great enough radius, the distance
between the two stars would become insignificant, and the stars could together be treated
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as one point-mass. At this large radius of r >> r
max

, where r
max

is the maximum distance
between the two stars in their elliptical orbits, assuming the eccentricity ✏ 6= 1, then the
planet would approximately revolve around the center of mass of the two stars in an ellipse,
as detailed in Section 2. In particular, if the eccentricity is close to 0, then the resulting
orbit is quasi-circular and its motion satisfies the approximate equality of gravitational and
centripetal forces:

mṙ2

r
⇡ Gm(m1 +m2)

r2
(45)

resulting in velocity

ṙ ⇡
r

G(m1 +m2)

r
(46)

5 Simulations Using Python

5.1 Motivation

In order to better understand the mechanics of the proposed problem, and in light of
the dearth of analytic solutions we ran a number of 3-body simulations involving various
initial conditions. We hoped through these simulations to validate our results regarding
the instability of the Lagrange points, and the stability of quasi-circular orbits.

5.2 Assumptions, Initial Conditions, and Implementation

We started by creating a simulation for the motion of the 2 stars using the analytic solution
presented in (21) and (22). Plotting these solutions gives:
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Figure 4: Elliptical solutions to the two body problem. The trajectory of the star with
less mass, m2 is shown with the dotted lines while that of the more massive star, with mass
m1, is displayed using solid lines. Eccentricity of 0.0 corresponds to blue, 0.2 to green, 0.4
to red, 0.6 to cyan, and 0.8 to red.

The positions of both stars can be described in terms the orbital angle �. This depen-
dence, however, is not ideal. Instead, we prefer to relate the position vector to time. This
is given by the following relationship between time elapsed since perihelion and �:[7]

t(�) =
⌧

2⇡

"
2 arctan

 r
1� "

1 + "

!
tan

✓
�

2

◆
� "

p
1� "2 sin(�)

1 + " cos(�)

#
(47)

Because we will be determining the position of the planet via numerical integration of
the acceleration, we need to determine �’s dependence on time. Rearranging the above
transcendental equation to creation a function in time has proven to be an exercise in
futility. Instead, our first step will be to generate a conversion table for our two variables.
To ensure that this table will be able to supply su�ciently accurate numbers, we calculated
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10,000 time-angle pairs over a single cycle. Inverting the dependence and plotting angle as
a function of time:

Figure 5: Orbital angle as a function of time for varying eccentricities. Eccentricity of 0
corresponds to blue, 0.2 to green, 0.4 to red, 0.6 to cyan, and 0.8 to red.

As expected, the orbital velocity (slope) at the perihelion (� = 0, t = 0) is maximized
with larger eccentricities. With a time dependence table we graphically demonstrate the
evolution of the elliptical orbits of the stars as functions of time.
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Figure 6: Evolution of binary star system as a function of time with an eccentricity of 0.6

With the stellar dynamics fully simulated, we move then to the next step of introducing
a planet into the system. In this simulation, we assume the planet is of negligible mass
with respect to the masses of both stars. As a result, we do not account for perturbations
in the elliptical orbits of the stars due to gravitational e↵ects of the planet. By noting the
relationship between the constant angular momentum and the eccentricity, (21) and (22),
it is possible to describe a spectrum of angular momenta with di↵erent values for ✏.

The code, which is presented in appendix A, is a class based program written in python
with the added benefit that it allows for the easy addition of bodies to the simulation.

5.3 Results

First, we simulated the motion of the system with the planet situated at the first Lagrange
point, L1. The planet rapidly devolved into ejection from orbit (Figure 8 in Appendix
B). This corroborated the analytic expectation that although L1 and L4 are equilibrium
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positions, they are unstable.

We proceeded to test our hypothesis regarding the point-mass limit under di↵erent
eccentricities. We tested a variety of eccentricities for r = 150 ⇥ 109meters, and r =
450⇥109meters, three times as far away from the center of mass of the system. Examining
a range of values for ✏, we determined that, for eccentricities of 0.0 up to at least 0.9,
velocities close to (46) produced stable orbits. Furthermore, we noticed, (Figures 9a-f in
Appendix B) that greater radii produced more predictable, elliptical motion. In particular,
when the radius was large, and velocities close to (46), the orbits tended to circles. The
adhered to our expectation for the behavior of the system in the point-mass limit.

6 Limitations of our Model

In our analysis of the stability of orbits for the circumbinary planet, we made many as-
sumptions and simplifications that limit the general nature of our solutions. We assume
from the beginning that all three celestial bodies are spherically symmetric, allowing us to
treat them as point-masses. We also assume that the mass of the planet is significantly
smaller than the masses of the stars, which enables us to make use of the restricted three-
body problem. If this mass is not negligible, then our discussion of Lagrange points is
entirely unfounded. In addition, even small planetary masses will cause perturbations in
the elliptical orbits of the binary stars, complicating the dynamics of the system.

If the radius in the point-mass approximation is not su�ciently large, then the orbit
deviates from a perfect ellipse around the center of mass of the system. This comes as no
surprise, as the motions of Figure 8 are fairly tame compared to those of the more chaotic
system portrayed in Figure 9. We also implicitly assume that the radii of the stars do not
pass the first Lagrange point, so there is no mass spillover.

Another limitation of our model takes the motion of the planet as being entirely in the
plane containing the stars, thereby narrowing our view of the problem.

Conclusion

Although our solutions are in no way complete, we predict a number of stable orbits for
circumbinary planets given our simulations in Python. We describe the elliptical orbits of
two-body motion and derive the five Lagrange points in the two body system which rep-
resent equilibrium locations. However, further analysis reveals under the mass constraints
given in the problem, none of the orbits resulting from these Lagrange points are stable.
We next look at the case in which our planet is far away from the stars. In this limit, the
binary star system looks like a single point-mass and we can again apply the solutions of
the two-body problem. To further confirm that our predictions were valid, we simulated
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the 3-body problem in Python. In general, we show a large set of solutions resulting from
a variety of initial conditions and parameters.

Appendix A
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Appendix B

Figure 7: A planet initially placed at r = 450⇥ 109 meters from the center of mass with
a large velocity exits the system.

Figure 7: Time evolution of a planet in a binary star system starting at L1 with 0 initial
velocity. As the equations of the restricted three-body problem would suggest, this

position is unstable, and the planet is ejected.
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Figure 8a: Time evolution of a planet in the point-mass limit with r = 450⇥ 109 meters
and ✏ = 0.0. The path traced out by the planet is nearly periodic.

Figure 8b: Time evolution of a planet in the point-mass limit with r = 450⇥ 109 meters
and ✏ = 0.6.
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Figure 8c: Time evolution of a planet in the point-mass limit with r = 450⇥ 109 meters
and ✏ = 0.9.

Figure 9a: Time evolution of a planet in the point-mass limit with r = 150⇥ 109 meters
and ✏ = 0.0. The path traced out by the planet is nearly periodic.
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Figure 9b: Time evolution of a planet in the point-mass limit with r = 150⇥ 109 meters
and ✏ = 0.6.

Figure 9c: Time evolution of a planet in the point-mass limit with r = 150⇥ 109 meters
and ✏ = 0.9.
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Appendix C

Kepler’s Third law gives us:

⌧2 =
4⇡2µa3

GM1M2
(48)

Where ⌧ is the orbital period of the two bodies, µ is the reduced mass defined above, and
a is the semi-major axis given by:

a =
c

1� ✏2
(49)

where ✏ is the eccentricity, and c is c = `

2
z

µGmAmB
. Putting these three equations together,

we get an equation in just ✏ and `

⌧2 =
4⇡2µ

GM1M2

1

(1� ✏2)3

✓
`2

µGM1M2

◆3

(50)

` = 3

s
(1� ✏2)3⌧2G4M4

1M
4
2µ

3

4⇡2µ
(51)

` = (1� ✏2)GM1M2µ
3

s
⌧2GM1M2

4⇡2µ
(52)

Thus, given any bounded orbit (1 > ✏ > 0), ` will give the necessary angular momentum.
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